

ECOINNOVACIÓN EN EFICIENCIA DE MATERIALES

Jorge Fernández Gómez
Orkestra-Instituto Vasco de Competitividad (Fundación Deusto)

4 de abril de 2025

El tema de hoy: ¿cómo contribuye la ecoinnovación en materiales a una mayor sostenibilidad medioambiental y a mayor competitividad empresarial?

Contexto general

Consumo de materiales en la industria vasca

Ecoinnovación en el País Vasco

Oportunidades asociadas a la circularidad y el ecodiseño

Impacto en la competitividad empresarial y territorial

Conclusiones

Macro- y micro-drivers de la economía circular

Estrategia de la UE

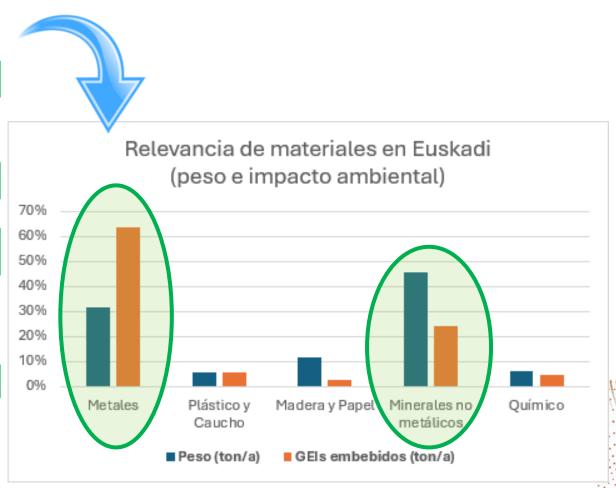
- Pacto Verde Europeo, Fit-for-55, REPowerEU (2019-2024) – NZIA, CRMA, CBAM...
- Informes Draghi, Letti (2024)
- Brújula de Competitividad (01/2025)
- Clean Industrial Deal (02/2025)
- Plan de Acción sobre acero y metales (03/2025)

1

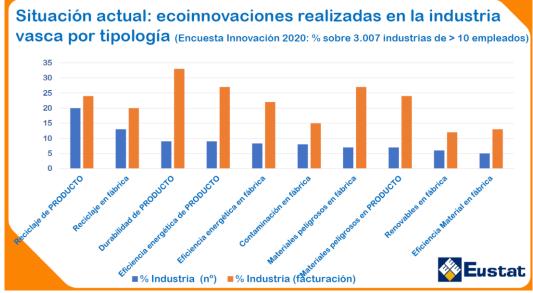
- ☐ Pandemia del coronavirus
- ☐ Crisis de cadenas de suministro
- ☐ Ucrania y crisis de precios de la energía
- ☐ Materias primas críticas
- ☐ Geopolítica (China, BRICS+, IRA, Trump...)

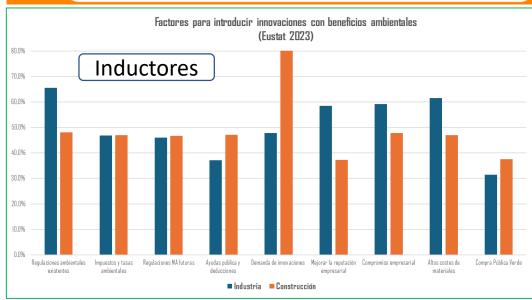
Retos y oportunidades de la economía circular y la ecoinnovación

- Anticipación a la regulación s/ Ec. Circ.
 - Paquete de 10 medidas clave (Regl. y Dir. sobre ecodiseño, taxonomía, derecho a reparar, envases, residuos en construcción, vehículos, RAEE, etc.)
- Mitigación de riesgos / autonomía
 estratégica (dependencia y seguridad en el suministro de MPC)
- Materializar el valor de la I+D+i
 - Ecodiseño (materiales / componentes / productos), producción y consumo ecoeficiente, retención de valor de productos y materiales, upcycling...
- Mejorar la sostenibilidad:
 - Competitividad (eficiencia, diferenciación, diversificación)
 - Menor huella medioambiental (eficiencia, desmaterialización, reducción de emisiones, otros impactos)
 - Impacto social positivo


Oportunidades empresariales

(nuevas formas de creación de valor y mejora del posicionamiento competitivo)


Consumo, circularidad, coste e impacto de los materiales en la industria vasca


Consumo de materiales en Euskadi (metales, plástico/caucho, madera/ papel, minerales no metálicos y químicos)	>30	Mill. de t (NTM)
Importaciones de materiales en Euskadi	70%	% del total
Consumo de metales en Euskadi	>10	Mill. de t
Consumo de minerales no metálicos en Euskadi	>14,5	Mill. de t
Consumo de materiales de la industria	> 80%	% del total
Importaciones de metales desde fuera de la Unión Europea	45%	% consumo
Tasa de circularidad en el uso de aluminio en Euskadi	> 20%	% del total de 440 kt
Tasa de circularidad en el uso de cobre en Euskadi	< 80%	% del total de 170 kt
Tasa de circularidad en el uso de neodimio en Euskadi	0%	% del total de 40 t
Coste de las materias primas en la industria vasca	> 60%	% C total
Tasa de uso circular de los materiales en Euskadi	8%	% consumo
% var. en el consumo doméstico de materiales Euskadi (2022 vs. 2005)	-40%	% variación
% var. en el índice de productividad material de Euskadi (2022 vs. 2005)	+150%	% variación
Retorno del "Programa de Ecoinnovación Circular" (facturación privada)	21	€ priv. / 1€ público

Fuente: IHOBE (diversas publicaciones y fuentes).

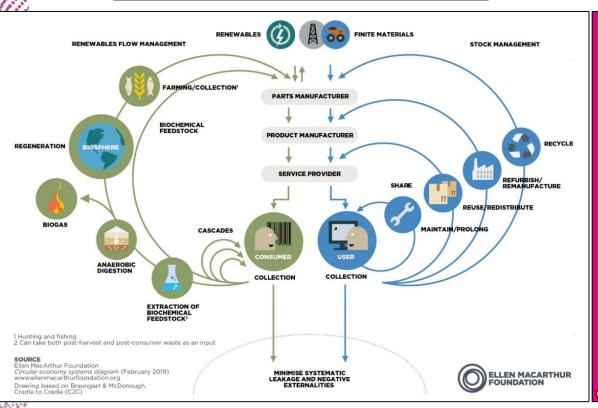
Fuente: IHOBE.

Actividades de ecoinnovación en la industria vasca

uanta.

https://www.ihobe.eus/publicaciones/ecoinnov acion-en-euskadi-105-proyectos-industrialespara-nuevas-soluciones-circulares

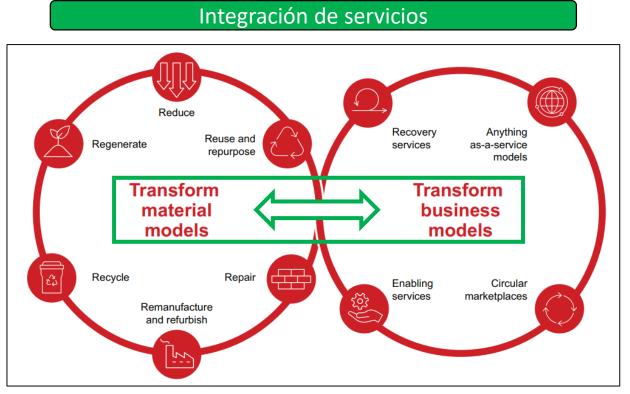
uente:


https://ecoinnovacion.ihobe.eus/assets/documentos/Ecoinnovacion-en-Euskadi cast.pdf

Los MNC crean valor en todo el ciclo de vida de los productos y materiales

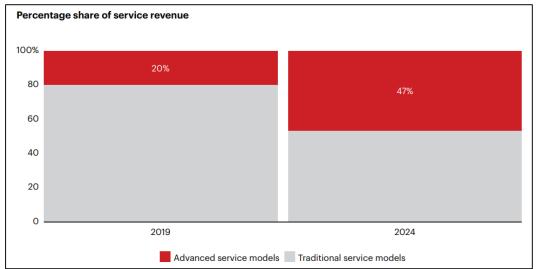
La "mariposa" de la EC

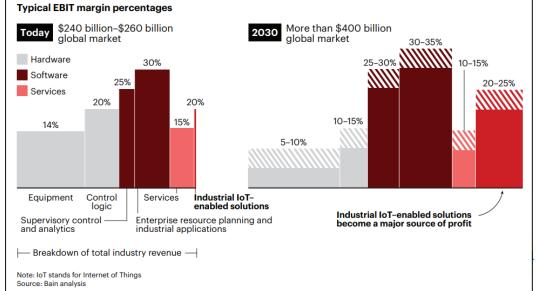
Inductores de propuestas de valor circulares



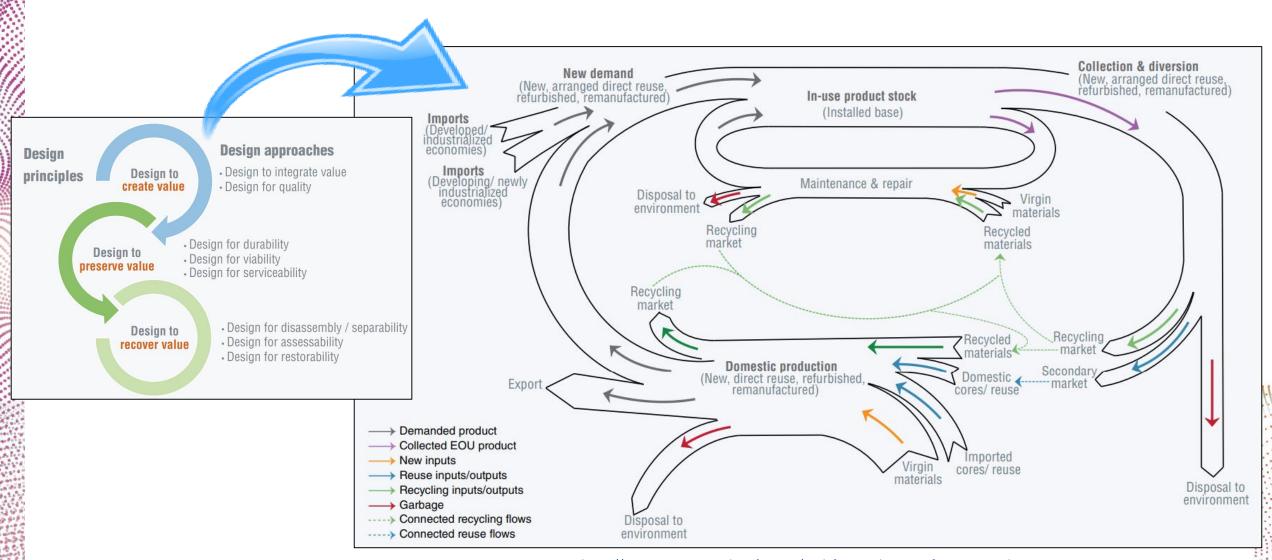
 $\textbf{Fuente:}\ \underline{\text{https://www.ellenmacarthurfoundation.org/circular-economy-diagram}}$

Fuente: https://sustainabilityguide.eu/wp-content/uploads/2018/05/Circular-business-models-tool.pdf




Una transformación circular en marcha

Fuente: Bain & Company (2024).



Ecodiseño y servitización como palancas de innovación y creación de valor

Impacto en todo el ciclo de vida de materiales y productos

Fuente: https://www.resourcepanel.org/reports/re-defining-value-manufacturing-revolution

Oportunidades tecnológicas en el País Vasco

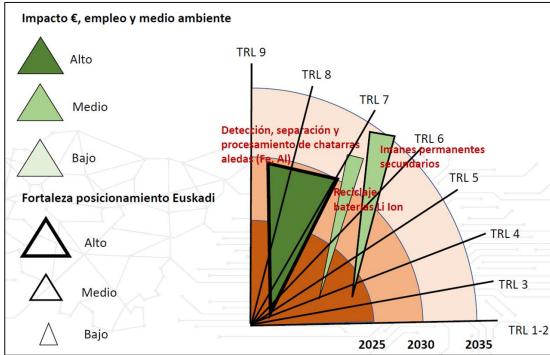
Actividades

- Recogida/recolección
- Separación
- Desmontaje
- Diagnóstico
- Detección
- Tratamiento materiales
- Ecodiseño de nuevos materiales
- Reciclaje de materiales
- Reparación
- Remanufactura
- Logística inversa
- Tratamiento de residuos
- Evaluación de impactos
- Trazabilidad, PDP
- . . .

Tecnologías

- Inteligencia Artificial
- Análisis de Datos
- Metodologías de análisis de circularidad (LCA, etc.)
- Nuevas tecnologías de diagnóstico (visión artificial...)
- Tecnologías de tratamiento y purificación

• . . .


Enfoque

- Tipo de material
- Tipo de producto
- Impacto (económico, medioambiental, social)
- Fortalezas industriales y empresariales
- Infraestructuras
- Cadena de valor de la ecoinnov.

Proyectos de Ecoinnovación Circular (total 26x)	%	
Aluminio: incrementar circularidad y valor del material secundario aleado	35%	
Chatarras: Mejora Separación y Reciclaje de aleaciones y CRM	26%	
Aceros altamente aleados: retención de valor del producto	15%	(
Baterías Litio Ion: alargar la vida y reciclaje	15%	
Imanes permanentes: reciclaje para la cadena de valor local	8%	

2Ø25 BASQUE CIRCULAR

Fuente: IHOBE (2024).

Impacto sobre la competitividad

2Ø25 BASQUE CIRCULAR SUMMIT

Competitividad empresarial

Creación de valor a partir de actividades circulares y centradas en las necesidades de los clientes que reducen el impacto medioambiental

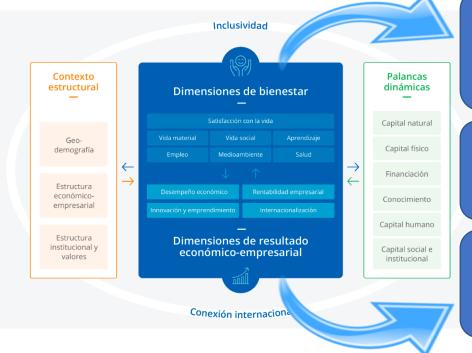
Incremento de productividad

Diferenciación de la propuesta de valor

Diversificación de la propuesta de valor

Acceso a financiación

Relación con los clientes


Marca y reputación

Innovación tecnológica y no tecnológica

Posicionamiento en la cadena de valor

Competitividad territorial

Potenciar las condiciones (palancas, contexto) que permiten generar bienestar y desarrollo económico en el territorio

Sostenibilidad económica

- Mayor eficiencia (productividad material, etc.)
- Innovación y emprendimiento
- Autonomía estratégica y gestión del riesgo de las cadenas de suministro

Sostenibilidad medioambiental

- Reducción de emisiones
- Reducción de otros impactos medioambientales (materiales vírgenes, residuos, etc.)

Sostenibilidad social

- · Empleo de calidad
- Alineamiento con preferencias sociales
- Aceptación social de la transición sostenible

Fuentes: Orkestra y elaboración propia.

Conclusiones

El contexto geopolítico, económico y regulatorio es complejo, pero existen múltiples oportunidades empresariales e industriales asociadas a la ecoinnovación y a los cambios en marcha (Clean Industrial Deal, etc.)
La seguridad de suministro y los costes de los materiales son aspectos críticos para la industria vasca, especialmente en metales (acero, aluminio, cobre), materiales de construcción, polímeros, materias primas críticas
La ecoinnovación es una realidad en el País Vasco, con vías claras de avance: (1) nuevos modelos de negocio circulares; (2) mayor circularidad/eficiencia en materiales y productos en la economía vasca; (3) innovación tecnológica y no tecnológica en torno a áreas de oportunidad y fortalezas de la industria vasca
Reforzar y facilitar las actividades de I+D+i en ecodiseño y circularidad (p. ej., ecodiseño de materiales-piezas-productos, producción/consumo eficientes, retención de valor de materiales y productos, <i>upcycling</i>) resultará clave para incrementar la eficiencia en materiales y descarbonizar la economía y reducir otros impactos medioambientales y generar otros impactos positivos (económicos, sociales, estratégicos)
El ecodiseño y la ecoinnovación se convierten en elementos centrales de las estrategias de las empresas y tienen un efecto potencial positivo sobre la competitividad empresarial (nuevas propuestas de valor) y territorial (potenciar condiciones de contorno)
Es necesario adoptar un enfoque integral , impulsando ecosistema de ecoinnovación dinámico y competitivo que favorezca la colaboración público-privada , teniendo en cuenta aspectos relevantes para la competitividad (visión y objetivos, estrategias territoriales, capacidades, financiación, incentivos económicos y fiscales, demanda, infraestructuras)
Un aspecto crucial: disponer de datos de calidad para establecer prioridades y diseñar estrategias y planes

#BCS2025

basquecircularsummit.eus